

VALORIZACIÓN DE RESIDUOS ORGÁNICOS PARA LA PRODUCCIÓN DE BIOGÁS EN CASTILLA-LA MANCHA

Mercedes García-Muñoz Martínez, Juan Pedro Felipe Santos y Lourdes Rodríguez Mayor.

Alquimia Soluciones Ambientales. Polígono Industrial Daimiel Sur c/ Calidad nº 3 (13250) Daimiel (Ciudad Real)

12 de mayo de 2011 Conferencias ATEGRUS® BIOENERGÍA 2011 TRATAMIENTOS ENERGÉTICOS DE RESIDUOS 2011

Alquimia Soluciones Ambientales

Empresa de base tecnológica Creada en el año 2005 Inversiones en I+D+i (2005-2008): 3,1 millones de euros

Objetivo:

✓ Ser un referente en la investigación aplicada para el aprovechamiento de Aguas, Residuos y Suelos y para la obtención de energía a partir de residuos y materiales no reutilizables o reciclables

I + D + i

Formulación de nuevos materiales a partir de residuos industriales peligrosos y no peligrosos

Tratamiento y reutilización de aguas residuales

Descontaminación de suelos

Valorización de residuos orgánicos para su aprovechamiento agrícola y energético

Otros productos de alto valor añadido

Gestión de Residuos

Tratamiento y reutilización de aguas residuales

Formulación de combustibles alternativos

Fabricación de nuevos materiales

Descontaminación de suelos

Compostaje

Acondicionamiento para el reciclaje de RNP

Reagrupamiento y transferencia de residuos

Transporte Autorizado de Residuos

Laboratorio y servicio de inspección

Análisis de vertidos, lixiviados y suelos

Caracterización de residuos y biomasa

Caracterización de abonos orgánicos y compost

Control de depuradoras

Caracterización de materias primas

Análisis de aguas superficiales

Servicio reglamentario de toma de muestras

Consultoría, y Servicios Ambientales

Proyectos de Demolición y Restauración Ambiental

Diseño e ingeniería ambiental

Peritajes e Informes Judiciales

Estudios de la Calidad de Suelos y Proyectos de descontaminación

Auditorías de Eficiencia Energética

Sistemas de Gestión Ambiental y de Calidad.

Limpiezas industriales especializadas

UNE-EN ISO 9001 UNE-EN ISO 14001 UNE -EN ISO/IEC 17052

Plantas piloto

Planta piloto de físico-químico

Planta piloto de electroxidación

Planta Piloto de tratamiento terciario

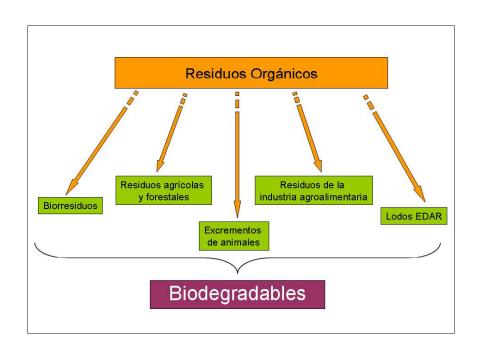
Planta Piloto de formulación

Planta piloto de compostaje

Planta piloto de biogas

Planta piloto de biorremediación

Planta piloto humedales artificiales



Nuestros Socios Tecnológicos

- Universidad de Castilla-La Mancha (UCLM). Departamento de Ingeniería Química e Instituto de Tecnologías Química y Medioambiental (ITQUIMA)
- Universidad Rey Juan Carlos de Madrid (URJC). Departamento de Ingeniería Química, Ambiental y de los Materiales.
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)
- Centro de Edafología y Biología Aplicada del Segura-CEBAS. Consejo Superior de Investigaciones
 Científicas (CSIC)
- Instituto Tecnológico de la Cerámica (ITC). Universidad Jaume I de Castellón
- Universidad Politécnica de Valencia (UPV). Departamento de Ingeniería Química y Nuclear.
- Centro del Agua y de las Ciencias Ambientales y Departamento de Ingeniería Química de la Universidad de Alicante
- Centro de Instrumentación, Tecnología e Innovación de la Universidad de Sevilla (CITIUS)

RESIDUOS ORGÁNICOS

Nuestro modelo de desarrollo socio-económico produce enorme cantidades de residuos.

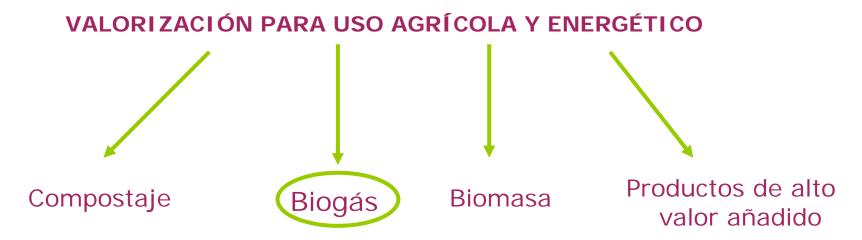
Por un lado, cada actividad, servicio o producto necesita materias primas y energía. Por otro lado, cada ciclo de vida termina con la producción de residuos, que no son otra cosa que materias primas y energía.

Para el caso de los residuos orgánicos, la situación es similar. Anualmente se generan millones de toneladas.

RESIDUOS ORGÁNICOS

La gran mayoría de estos residuos son depositados en vertederos donde se descomponen, de forma espontánea, por la acción de los microorganismos generando metano (gas de potente efecto invernadero).

FÁCIL Y RÁPIDA DESCOMPOSICIÓN



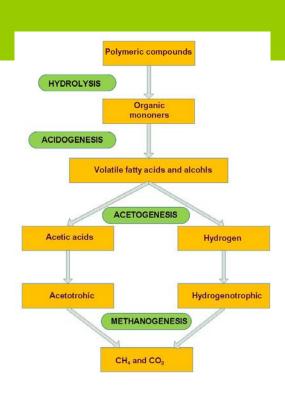
EMISIONES DE GASES EFECTO INVERNADERO ESCASA REUTILIZACIÓN

ENORME VOLUMEN DE GENERACIÓN

RESIDUOS ORGÁNICOS

La problemática ambiental de los residuos orgánicos es aún más significativa si se tiene en cuenta que podrían ser aprovechados para producir energía renovable, limpia y autóctona, o ser usados como abono para la agricultura o enmienda para la recuperación de suelos empobrecidos.

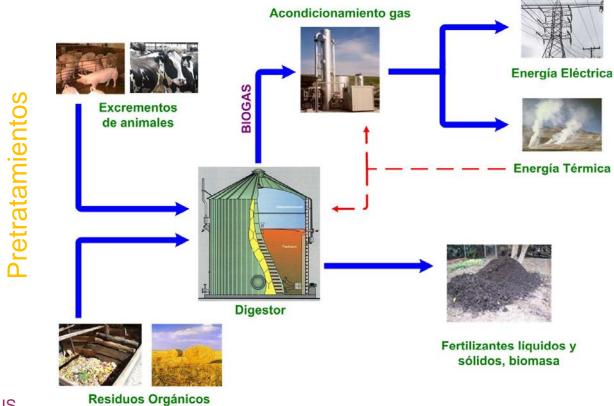



La legislación española y europea está impulsando este tipo de tratamientos.

BIOGÁS: ¿Qué es?

En sentido estricto, el biogás es un biocombustible producido a partir de la biomasa y a través de un proceso bioquímico conocido como digestión anaerobia o biometanización.

Es una mezcla de gases:

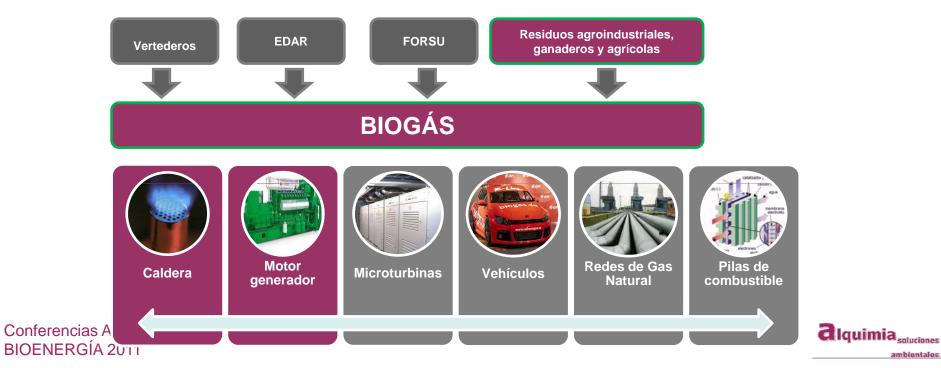

- √ Metano (CH₄, 50-75%)
- ✓ Dióxido de carbono (CO₂, 20-40%)

Otros gases en menor proporción:

H₂S, NH₃, N₂, O₂, H₂ y vapor de agua.

BIOGÁS: ¿Para qué sirve?

Combustible de calderas, motores de cogeneración, combustible de vehículos, como gas natural...



BIOGÁS: Diferentes usos

En función de los residuos que se utilicen la composición del biogás presentará algunas diferencias. Los sustratos utilizados también son importantes en el seguimiento de la producción de biogás y en la composición final del digestato.

Tipo de gas	Biogás FORSU	Biogás Industria agroalimentaria	Gas Natural
Composición	60 % CH ₄ 33 % CO ₂ 1 % N ₂ 6 % H ₂ O	68 % CH ₄ 26 % CO ₂ 1 % N ₂ 5 % H ₂ O	97 % CH ₄ 2,2 % CO ₂ 0,4 % N ₂
PCI (kWh/m³)	6	6,8	10,3

BIOGÁS: ¿Por qué?

Ventajas energéticas

Posibilidad de generación de energía neutral desde el punto de vista de emisiones de CO₂

Balance de energía positivo mucho más favorable que otros sistemas biológicos de eliminación de materia orgánica

Aprovechamiento de una fuente de energía renovable

Biogás 50-70% CH₄

PCI:4.000-8000 kcal/m³

Real Decreto 661/2007- actualizaciones

Tarifa B.7.2 (digestores)

Ventajas medioambientales

Gestión más sostenible de los residuos

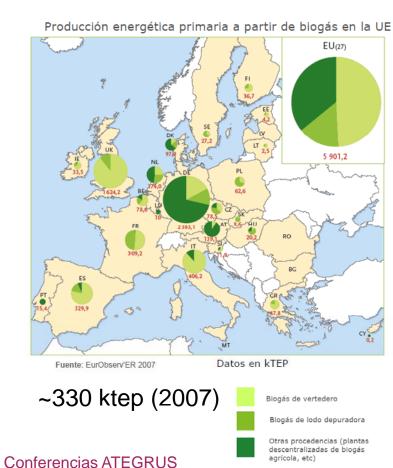
Reducción de efectos de las emisiones de CH₄ y CO₂

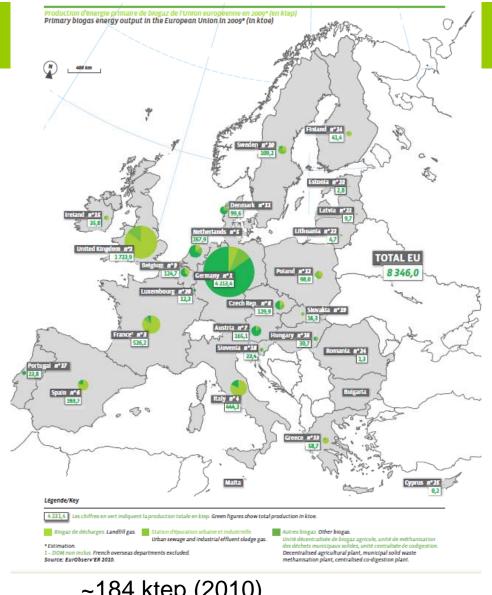
Ventajas económicas

Ahorro en la gestión de los residuos

Ingresos económicos derivados de la producción de energía

Ahorro de fertilizantes químicos

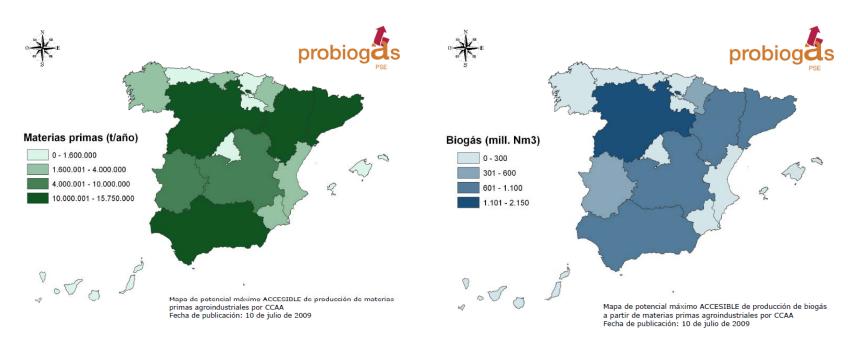

Fomento de la actividad industrial



BIOENERGÍA 2011

BIOGÁS: En España

Situación Actual del Biogás en la UE



~184 ktep (2010)

BIOGÁS: En España

- El primer país de la UE en superficie de cultivo
- El cuarto en producción ganadera
- El quinto en producción alimentaria a nivel industrial

BIOGÁS: En España

Residuos disponibles	Producción (millones de t/año)	Potencia de generación de biogás (millones de m³/año)	Potencia de generación de energía eléctrica (millones de kW/año)
Subproductos ganaderos	49	2.400	5.290
Subproductos vegetales	27	5.000	11.000
Subproductos cárnicos	3,3	100	220
Subproductos lácteos	3,1	125	276
Subproductos procedentes del pescado	0,5	43	96
Otros	0,6	331	728
TOTAL	83,5	8.000	17.600

Fuente: Probiogas, 2009

BIOGÁS: En España

Comunidades Autónomas	Producción de residuos (millones de t/año)	Potencia de generación de biogás (millones de m ³ /año)	Principales residuos
Castilla y León	15,7	2.140	Ganaderos, lácteos y vegetales
Andalucia	12,7	1.000	Vegetales, ganaderos y cárnicos
Castilla-La Mancha	8,6	952	Ganaderos, vegetales y lácteos
Aragón	10,1	858	Ganaderos, vegetales y cárnicos
Cataluña	12,3	767	Ganaderos, vegetales y cárnicos
TOTAL	59,4	5.767	

Fuente: Probiogas, 2009

VALORIZACIÓN DE RESIDUOS ORGÁNICOS PARA LA PRODUCCIÓN DE BIOGÁS EN CASTILLA-LA MANCHA

- ✓ El tratamiento biológico de residuos orgánicos mediante digestión anaerobia podría ser una posible solución para reducir o resolver los problemas relacionados con el hecho de que el destino final de un gran porcentaje de ellos sea el vertedero.
- ✓ Esta idea no sólo significa una gestión más eficiente de los residuos orgánicos, sino también la producción de energía renovable.

Objetivo:

Analizar las posibilidades de implantación de esta tecnología en Castilla-La Mancha y evaluar la adaptación necesaria de la misma.

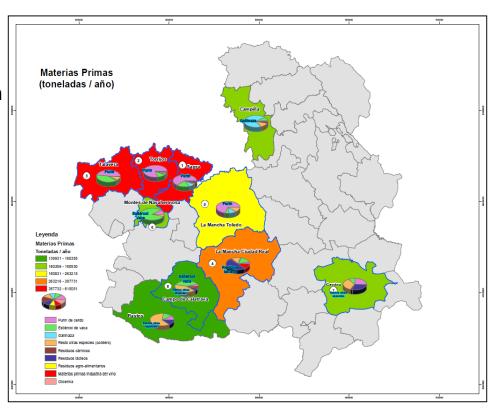
Etapas:

- Estado del arte
- Estudio de localización
- Recogida y caracterización de residuos
- Pruebas de valorización
- Caracterización y valorización del digestato
- Diseño de planta piloto de demostración

Algunos de los principales logros son:

- (1) La caracterización de los residuos orgánicos producidos en Castilla-La Mancha
- (2) La evaluación a escala de laboratorio de producción de biogás a partir de diversos residuos orgánicos (discontinuo y semicontinuo)
- (3) El análisis de residuos de codigestión y
- (4) La valorización de los digestatos

Planta de demostración para la producción de biogás con reactor de 500 litros de volumen.



Estudio de localización de residuos

Comarcas:

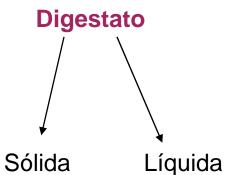
- ☐ Talavera, Torrijos y La Sagra (rojo): purín porcino
- □ La Mancha de Ciudad Real (naranja): lactosuero
- ☐ La Mancha de Toledo (amarillo): purín porcino
- ☐ Campo de Calatrava y Pastos (verde más oscuro): estiércoles vacuno y ovino
- ☐ Centro, Campiña y Montes (verde más claro): estiércoles ovino, gallinaza y estiércoles vacuno

Fuente: Probiogas, censos estadísticos, etc.

Caracterización fisicoquímica

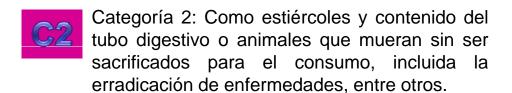
pH, Conductividad, Sólidos Volátiles, Sólidos Totales, Humedad, DQO, C/N, NH₄+, P total, Metales, etc.

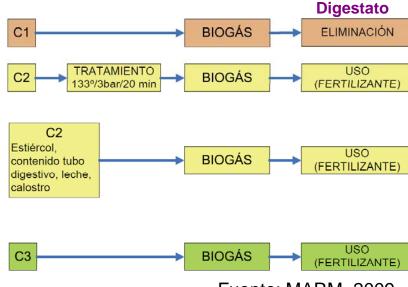
Ensayos en discontinuo



Codigestión

Biogás




□ UNA NOTA SOBRE LA LEGISLACIÓN

Subproductos de origen animal no destinados al consumo humano (SANDACH)

Categoría 1: Por ejemplo materiales específicos de riesgo (MER), productos derivados de animales a los que se hayan administrado sustancias prohibidas, residuos del catering internacional, etc.

Categoría 3: Se trata de las partes de animales aptos para el consumo humano de conformidad con la normativa comunitaria, pero que finalmente no son destinados para este uso.

Fuente: MARM, 2009

□ Residuos ganaderos

esiduos gariaderos

Vacuno

Conejo

- √ Materia orgánica (>70% ST)
- ✓ pH óptimo: 7-8
- ✓ C/N: 15-20; 3-10 (gallinaza)
- √ Tiempos de retención: aprox. 20 días
- ✓ Producción de biogás (L/ kg SV): 200 (vacuno); 400 (gallinaza y purín de cerdo)
- ✓ 70-80% de CH₄
- ✓ Pesticidas, antibióticos o detergentes
- √ Contenido en paja de las camas
- √ Gallinaza: inhibición por amonio
- ✓ Purines: almacenamiento

■ Residuos agrícolas

Sarmientos

Carrizo

Serrín

Restos de poda

- ✓ Materia orgánica (>90% ST)
- \checkmark C/N >30-40 (90, paja)
- √ Tiempos de retención: >20 días
- √ Producción de biogás (100 L/ kg SV): 300 (paja de cereal) hasta 800 (ensilado de remolacha azucarera)
- ✓ Pesticidas
- ✓ Pretratamientos: tamaño de partícula, hemicelulosa, ligninocelulosa
- √ Compostaje del digestato

■ Residuos de la industria cárnica

Excremento panzas

Sangre cocida

Lodos depuradora

Crudo Cat.1

Crudo Cat.3

Fracción del Residuo	Índice de producción de metano (m³/t de residuo)
Harinas C2	469
Subproductos animales pasteurizados	225
Mezcla residuos de matadero	160
Hidrolizados de carne y hueso	70-100
Intestinos y contenidos estomacales (vísceras)	50 -100
Contenido estomacal de cerdos	380 (*)
Contenido del rumen	405 (*)
Grasas de flotación	1000 -500 (*)
Desperdicios de huesos , pieles y pelos	100 (*)
Sangre	100 (*)
Desperdicios de pieles	300 (*)

^(*) m³ de biogás /t de residuo

☐ Residuos de la industria cárnica

- ✓ Relación C/N de 2 a 8
- √ pH idóneo
- ✓ El exceso de proteínas y grasas puede provocar inhibiciones
- ✓ La pasteurización aumenta hasta cuatro veces el rendimiento en la producción de metano (Rutledge, 2004), ya que aumenta la disponibilidad de los lípidos.

Codigestión con residuos agrícolas u otros sustratos orgánicos con elevada relación C/N.

Mezcla Ind. Cárnica (1)	123 L Biogás/kg SV
Mezcla Ind. Cárnica + ganadero (2)	263 L Biogás/kg SV

☐ Residuos de la industria láctea, frutas y hortalizas, etc.

"Compost" champiñón "Compost" seta

Lodo lácteo

100 L/ kg SV

450 L/ kg SV (600)

Restos de fruta Restos de cebollas

170 L/ kg SV (550)

Vinazas

- ✓ Acidificación
- √ Ácidos grasos volátiles
- ✓ Pesticidas, desinfectantes

Componente	Presente en	Biodegradabilidad anaerobia
Azúcares	Azúcares Remolacha o caña de azúcar. Subproductos de una azucarera o fábrica de golosinas, etc.	
Almidón	Almidón Excedentes de cereales, patatas, etc., subproductos de fábricas de snacks o de almidones, etc.	
Celulosa Paja triturada, hierba, pulpas y pieles de frutas y verduras, etc.		Buena
Proteínas	Proteínas Subproductos animales, productos cárnicos, lácteos, o de la pesca, etc.	
Grasas	Grasas Subproductos de origen animal o vegetal.	
Pesticidas, antibióticos, detergentes	antibióticos, subproductos de la industria farmacéutica.	
Sales.	Sales. Salmueras o residuos salinos.	
Arena, piedras	Arena, piedras Estiércol, purines, restos vegetales, etc.	
Metales	Metales Residuos de envases.	
Plásticos	Plásticos Residuos de envases.	

¹⁾ Requiere mayores tiempos de retención

Fuente: Ainia, 2009

Digestato

- √ Reducción de la materia orgánica
- √ Fertilizante (no se elimina el nitrógeno)
- ✓ Estabilización total o parcial (compostaje)
- √ Higienización parcial (termófilo)
- √ Reducción de olores
- √ Homogeneización
- ✓ Reducción del volumen 5-10%

Caso 1: Biogás a partir de residuos ganaderos

Principales parámetros de la caracterización físico-química

Parámetro	Gallinaza	Estiércol de Cordero	Estiércol de Vaca	Purín de Cerdo
рН	7,60	7,15	8,01	6,88
Conductividad (mS/cm)	3,20	3,81	2,13	24,70
Humedad (%)	72,78	67,78	11,41	96,42
Sólidos totales (%)	27,22	32,22	88,59	3,52
Materia Orgánica (SV) (% ST)	69,71	90,04	72,63	61,24
DQO (ppm)	190.482	145.050	108.545	49.247
Relación C/N	18,44	33	25	9,5
Nitrógeno N-NH4 (ppm)	160	2.380	53	2.250
Sodio (Na)(mg/kg sms)	2.572,2	2.240	8243	15.426
Metales	N.D*	N.D*	N.D*	Zinc

Producción de metano a partir de valorizaciones en semicontinuo

Residuo	Biogás (L Biogás/kg SV)	──%CH₄	Tiempo de retención	
Purín de cerdo	16	65	7	
Gallinaza	90	52	8	
Estiércol de Vaca Seco	285	67	20	
Estiércol de Cordero	410	65	25	

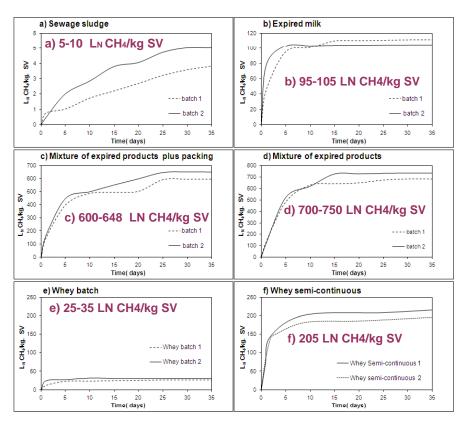
Caso 1: Estimación económica de una planta de biogás a partir de estiércol de cordero

- ☐ Castilla-La Mancha: 1 millón de toneladas anuales (27% de los residuos ganaderos de la Región)
- ☐ Según nuestros resultados, tiene un potencial de biogás significativo
- ☐ Gestión actual: Se retira de las granjas y se acumula en pilas durante un tiempo. Posteriormente, es usado como abono para los cultivos
- ☐ Comarca de Pastos : 90.330 t/año de estiércol de cordero (75% se suponen disponibles)

La estimación resultante es bastante optimista con un periodo de retorno de 9 años, situándose entre los modelos 2 y 3 ó 6 de biodigestión publicados por el Ministerio de Medio Ambiente, Medio Rural y Marino en 2010.

CODIGESTION

Concepto	Datos Plant	a de biogás
Cantidad de estiércol de cordero (75%)	67.747.500	kg/año
Volumen de biogás generado	8.058.202	m³ de biogás/año
Contenido de CH ₄	65	%
Poder energético del biogás	5,61	kWh/m³ biogás
Energía	45.206.514	kWh/a
Eficiencia motogenerador	38	%
Horas de funcionamiento	7.500	h/a
Potencia generada	2.290	kW
Energía eléctrica	17.178.475	kWhe
Tarifa según RD 667/2007	10,24	c€/kWhe
Ingresos por ventas de electricidad	1.759.076	€
Inversión por kW	3.500	€/kW
Inversión biodigestión	8.016.622	€
Inversión cogenerador y conexión	300.000	€
Inversión total	8.316.622	€
Coste de mantenimiento y operación (4% de la inversión total)	332.665	€
Costes de mano de obra (2% de la inversión total)	249.499	€
Intereses al 7% sobre el 50% de la Inversión total (10 años de amortización)	291.082	€
Costes total	873.245	
Ganancias anuales	885.831	€
Periodo de retorno	9	años



Caso 2: Biogás a partir de residuos de la industria láctea

Principales parámetros de la caracterización físico-química

Residuo	рН	ST (%)	MO (%ST)	DQO (mg/l)	N-NH ₄ + (mg/l)
Leche caducada	6,8	10,4	64,8	179.939	74
Lodo lácteo	12,0	26,7	62,4	158.283	251
Mezcla de caducados	4,5	13,9	73,6	248.769	108
Mezcla de caducados con					
envase	4,8	18,8	73,7	249.207	744
Lactosuero	4,3	7,7	92,8	116.500	1.350

Producción de metano

Biogas: Energía in situ para Castilla-La Mancha

El proyecto

Caso 2: Estimación económica de una planta de biogás a partir de lactosuero

- ☐ España produce 3 millones de t/año de residuos lácteos
- ☐ Castilla-La Mancha: 9,5% del total nacional
- □ Lactosuero: 278.159 t/ año
- ☐ Según nuestros resultados, tiene un potencial de biogás significativo
- Gestión actual: comida para el ganado
- ☐ Comarca de La Mancha (Ciudad Real) : 74.3% del total de lactosuero

La estimación resultante es bastante optimista con un periodo de retorno de 7 años.

Concept	Biogas Plant		
65% of the total whey	115935950	kg/year	
Methane production	1696080	m ³ methane /year	
Energetic biogas potential	5,61	kWh/m³ biogas	
Net Energy	9515008	kWh/year	
Electrical efficiency	38	%	
Working hours	7500	h/year	
Power	482	kW	
Electricity	3615703	kWhe	
Electricity rates (RD 667/2007)	13,8	c€/kWhe	
Benefits from electricity sales	498967	€	
Investment by kW	3500	€/kW	
Biodigestion investment	1687328	€	
Cogeneration unit and connection to the power grid	300000	€	
Total investment (TI)	1987328	€	
Running costs: Maintenance and operation cost (4% of TI)	79493	€	
Running costs: Labour (3% of TI)	59620	€	
7% interest on 50% of TI (10 year amortization)	69556	€	
Total Cost	208669	€	
Annual Benefit (Net margin)	290298	€	
Recovery period	7	years	

Conclusiones

LI biogás podría ser una tecnología viable en Castilla-La Mancha	Ц	ΕI	biogas podria	ser una tecn	ologia viable er	n Castilla-La	Mancha
--	---	----	---------------	--------------	------------------	---------------	--------

Codigestión

□ La implantación del biogás en Castilla-La Mancha supondría un aumento significativo del biogás de digestores en España

☐ Empleo y diversificación del medio rural : gestión de residuos y la producción de energía

☐ Sistema para la compensación de gases de efecto invernadero

etc.

Plantas biogás digestión anaerobia en C-LM

Nombre de la Instalación	Municipio de la instalación	Provincia de la instalación	Potencia Total (kW)	Fuente biogás
VALPUREN BAÑUELO	Polán	TOLEDO	16.500	Purines
VALPUREN COMATUR	Consuegra	TOLEDO	16.500	Purines

Conclusiones: Algunos datos económicos de una planta 500 kw

- ➤ Una Planta de Biogás completa (totalmente automatizada) tiene un coste de inversión entre 1,5-2,3 MM € (según los sustratos introducidos y sus necesidades tecnológicas). Aproximadamente 4.000 €/kWh
- Las necesidades de terreno para la instalación son de entre 5.000 y 7.500 m². Aproximadamente 10-15 m²/kWh
- Los ingresos esperados por la venta de electricidad son de unos 550.000 EUR (supuestas unas 8.000 hora de funcionamiento en continuo)
- Además se podrían generar ingresos extra por la venta de calor y por la gestión de ciertos residuos industriales. En el caso del generador del residuo, ahorro por un coste no incurrido. En el caso de autoconsumo de energía térmica, también ahorro por un coste no incurrido.
- > También es posible generar un ingreso por la venta del digestato como fertilizante.
- > Los gastos anuales de devolución del capital más intereses, mantenimiento y reparaciones, salarios y otros gastos extras pueden ascender a unos 400.000 EUR.
- ➤ El beneficio anual esperado está entorno a los 150.000 €

Fuente: Rodríguez, L. 2011

Futuros proyectos

Algunos tópicos de interés:

- Optimización de los tratamientos biológicos de residuos
- ✓ Búsqueda de nuevas alternativas
- Desarrollo de nuevos servicios y productos
- Mejora de la producción de biogás: codigestiones, pretratamientos, inóculo y microbiología del proceso
- ✓ Reutilización y depuración de digestatos
- ✓ Innovación tecnológica y estandarización de la metodología

En este sentido, seguimos investigando y realizando otras pruebas y experimentos con el fin de obtener más resultados e información acerca de la viabilidad del biogás en Castilla-La Mancha

Gracias por vuestra atención

"Ya es tiempo de investigar, aprovechar y reutilizar.

Es tiempo de alquimia"

Pol. Industrial Daimiel Sur C/ Calidad, parcela 46 13250 Daimiel (Ciudad Real)

Tel.: 926.87.95.35 Fax: 926.87.95.25

MADRID:

C/ Alfonso Gómez nº 42, 2°,

Ofic. 1-2-2 28037 Madrid

Tel.: 91.129.80.30 Fax: 91.304.45.09

alquimia@alquimiaimasd.com

www.alquimiaimasd.com